
J. Fluid Mech. (2010), vol. 655, pp. 122–151. c© Cambridge University Press 2010

doi:10.1017/S0022112010000728

Turbulent plumes with internal generation
of buoyancy by chemical reaction

A. N. CAMPBELL† AND S. S. S. CARDOSO
Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street,

Cambridge CB2 3RA, UK

(Received 10 July 2008; revised 7 January 2010; accepted 8 February 2010)

Turbulent plumes, which are seen in a wide number of industrial and natural flows,
have been extensively studied; however, very little attention has been paid to plumes
which have an internal mechanism for changing buoyancy. Such plumes arise in e.g.
industrial chimneys, where species can react and change the density of the plume
material. These plumes with chemical reaction are the focus of this study. An integral
model describing the behaviour of a plume undergoing a second-order chemical
reaction between a component in the plume (A) and a component in the surrounding
fluid (B), which alters the buoyancy flux, is considered. The behaviour of a reactive
plume is shown to depend on four dimensionless groups: the volume and momentum
fluxes at the source, the parameter ε which indicates the additional buoyancy flux
generated by the reaction and γ which is a dimensionless rate of depletion of species B.
Additionally, approximate analytical solutions are sought for a reactive plume rising
from a point source of buoyancy when species B is in great excess. These analytical
results show excellent agreement with numerical simulations. It is also shown that
the behaviour of a reactive plume in the far field is equivalent to an inert plume
issuing from a virtual source downstream of the real source, and the dependence of
the location of the virtual source on ε and γ is discussed. The effects of varying the
volume flux at the source and the Morton source parameter Γ0 are further investigated
by solving the full governing equations numerically. These solutions indicate that ε

is important in determining the buoyancy generated by the reaction, and the length
scale over which this reaction occurs depends on γ when γ > 1. It is also shown
that when the dimensionless buoyancy ε < − 1, the reaction can cause the plume to
collapse.

1. Introduction
Turbulent plumes are encountered in a wide variety of natural and industrial flows.

Important examples linked to industrial activity are smoke plumes from chimneys
or oil fires, effluents from submerged pollution outlets or even the extreme case of
a nuclear accident, whilst naturally occurring plumes arise at seafloor hydrothermal
vents, in convection in clouds and in explosive volcanic eruptions. These flows range
over orders of magnitude in size, but their dynamics are similar.

As a turbulent plume rises above a localized source of buoyancy, it entrains
ambient fluid and expands radially. Morton, Taylor & Turner (1956) proposed the
most successful macroscopic quantitative description of entrainment, by defining the
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classical entrainment coefficient

α = ue/w, (1.1)

where ue is the entrainment velocity at the edge of the plume and w is a measure of the
vertical velocity in the plume at the height of interest. The buoyancy flux in the plume
depends on the buoyancy released at the source and on vertical density changes in the
surrounding environment. The interactions between the plume and its surroundings,
and the evolution of buoyancy in the plume induced by the environmental density
stratification have been studied extensively for more than 50 years (List 1982).

However, there are many examples of plumes which have internal mechanisms
for generating buoyancy, in addition to the buoyancy released at the source and
any possible changes induced by external stratification. In oil refinery flares, in fires
and other chemical plumes, the ongoing chemical reactions generate large fluxes of
buoyancy within the plume. For example, Hanna, Chang & Zhang (1997) considered
the accidental release of uranium hexafluoride from pipes or vessels. Depending on
the physical conditions, the released UF6 can initially form a dense mixture of gas and
solid particles. The particles sublime, thus absorbing heat (�HS = 50 kJ mol−1) and
making the plume more dense. The UF6 can also react with water vapour to form HF
(�Hrxn = −58.6 kJ mol−1) which reacts further with water (�Hrxn = −26.2 kJ mol−1).
There is therefore a combination of reactions that can cause the plume to switch from
being denser than air to less dense. In volcanic plumes, hot clasts heat up entrained
air generating the buoyancy responsible for the high altitudes reached by the plumes,
and in clouds and discharges from power plant chimneys, transitions of phase can
induce important density changes. These types of plumes, with internally produced
buoyancy changes, have been the focus of comparatively few studies.

Previous work on plumes or jets with internal buoyancy generation has been
primarily concerned with understanding the behaviour of cumulus clouds, where
latent heat effects can cause changes in buoyancy, and with volcanic eruption columns.
In analogy with cumulus clouds, the behaviour of buoyant jets heated volumetrically
by passing an electric current through them at some distance above the source has
been studied experimentally by Bhat, Narasimha & Arakeri (1989). Their initial
experiments on turbulent jets indicated that the rate of radial spread of the jet was
reduced in the presence of significant volumetric heating. Further studies (e.g. Bhat &
Narasimha 1996; Venkatakrishnan, Bhat & Narasimha 1999; Agrawal & Prasad
2004; Agrawal, Sreenivas & Prasad 2004) confirmed the reduction in plume width
with heat addition, and observed that this effect was coupled with an acceleration of
the fluid and with a disruption of the large-scale eddies in the flow. These studies also
showed that just downstream of the zone of heat addition, the rate of entrainment
increased, whereas farther downstream, the rate of entrainment was slightly lower.

The different behaviours exhibited by volcanic eruption columns were studied
experimentally by Woods & Caulfield (1992). Their experiments were conducted by
injecting a buoyant mixture of methanol and ethylene glycol (MEG) downwards into
a tank of fresh water. When the MEG mixes with water, it can become denser than
water and form a convecting plume. This system allowed the study of the conditions
for which the plume is stable and for which it collapses. Woods & Caulfield (1992)
developed a simple model to predict collapse. Their modelling was later extended
(Caulfield & Woods 1995) for a general plume where the two fluids exhibit nonlinear
mixing. More recently, a similar system using ethanol and ethylene glycol (EEG)
was used by Kaminski, Tait & Carazzo (2005) to investigate the effects of buoyancy
generation on entrainment. They derived an expression for the entrainment coefficient
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α based on the local Richardson number (Ri) and a number of integral parameters
of the plume.

In addition to the experiments described above, there have been a limited number
of attempts at modelling plumes or jets with internal generation of buoyancy. Hunt &
Kaye (2005) considered the effect of buoyancy generation on so-called lazy plumes, i.e.
plumes with a deficit of momentum at the source compared with a pure plume with
the same buoyancy flux at the source. The model they developed was based on that of
Morton et al. (1956) and assumed Gaussian profiles within the plume. Hunt & Kaye
(2005) considered a case where the buoyancy flux increased linearly with height and
were able to define a length scale at which the buoyancy flux generated during ascent
became equal to that released at the source. The model showed that a plume with
internal generation of buoyancy was narrower than the corresponding non-reactive
plume.

An analysis similar to that described by Hunt & Kaye (2005) was used by Ishimine
(2007) to investigate the behaviour of eruption columns with internal buoyancy
generation. Ishimine (2007) considered plumes with a linear variation of buoyancy
flux with height as well as plumes in which the buoyancy flux changed with distance
above the source z according to

B = B∞(1 − exp[−z/L]). (1.2)

Here, the buoyancy flux increases from zero to a constant value B∞ far above the
source. Ishimine (2007) investigated the behaviour of plumes with such variations
in buoyancy flux in both stratified and uniform environments. As in Hunt & Kaye
(2005), no detailed mechanisms to generate such a variation of buoyancy flux were
discussed. It should also be noted that Ishimine (2007) did not use the classical
entrainment hypothesis described above (see (1.1)), but instead assumed that the
plume radius increased linearly with height as discussed by e.g. Batchelor (1954) and
Priestley & Ball (1955). Both Ishimine (2007) and Hunt & Kaye (2005) showed that
for a plume with a buoyancy flux that increases linearly with height, the velocity of
the plume was independent of the height above the source in the far field.

Diez & Dahm (2007) developed a new approach to model the behaviour of a
turbulent buoyant jet flame. In such a flame, the rate of reaction is very fast; hence,
the progress of the reaction, and consequently, buoyancy generation are limited by
mixing. The model utilized an equivalence principle, developed in previous studies
(Tacina & Dahm 2000; Dahm 2005) of different shear flows undergoing reaction
controlled by mixing. The method involves the superposition of two non-reactive
plumes to describe the behaviour in the reactive case. The authors developed an
integral model for a non-reacting plume. As with Ishimine (2007), they did not
use the entrainment hypothesis, but instead relied on the empirical observation that
the spreading coefficient in jets and plumes is approximately the same. In addition,
when modelling the change of buoyancy flux with height, they assume that the rate
of reaction is one third of the rate of entrainment (characterized by the rate of
change of mass with height), again based on some empirical measurements. Diez &
Dahm (2007) showed that their method agreed well with measured flame lengths and
velocities in buoyant jet flames.

Recently, Conroy & Llewellyn Smith (2008) formulated a plume model in which
the effects of an exothermic or endothermic reaction on the plume dynamics were
considered. This work extended their previous study (Conroy, Llewellyn Smith &
Caulfield 2005) of a plume undergoing a chemical reaction which had no effect
on the buoyancy flux. Conroy & Llewellyn Smith (2008) inserted an expression for
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the variation of density in a flowing reactive system, as derived by e.g. Clarke &
McChesney (1964) and Williams (1985), into the top-hat reactive plume model of
Conroy et al. (2005), in which the Boussinesq approximation is made, and also into a
model for non-Boussinesq plumes. It was shown that the effect of a chemical reaction
on the plume density could be summarized by a parameter, σ , which combined the
thermodynamic effects of the reaction on the density with the local rate of reaction. In
combustion science, where σ is often used in the modelling of flames, this parameter
is taken to represent the rate of heat liberation by the chemical reaction, but it can
also include density changes caused by the changing composition of the reactive
mixture. Conroy & Llewellyn Smith (2008) then presented numerical simulations for
a Boussinesq plume, with and without stratification in the environment, for perfect
gasses undergoing the second-order reaction S1 + S2 → S3. Even in the absence of
any heat of reaction, such a reaction would always cause the plume to collapse (in
the absence of any additional source of buoyancy) because of the production of a
heavier molecule from two lighter ones. Additionally, they presented an approximate
analytical solution in the absence of stratification for the limiting case where both the
rate of reaction and the heat of reaction are very large. Finally, numerical simulations
of a non-Boussinesq plume without external stratification were discussed.

There are, however, some problems with Conroy & Llewellyn Smith’s (2008)
analysis. The numerical solutions for the Boussinesq plume in the absence of
stratification are presented for different values of a dimensionless parameter (their
λ3), which they consider to be a dimensionless rate of reaction. However, the scheme
used to make the governing equations dimensionless indicates that this parameter is
in fact given by (2α)2/3M3/M1, where Mi represents the molar mass of species i. Given
that throughout the paper it is assumed that M1 =M2 = 1 (and hence, via the reaction
stoichiometry above M3 = 2), the numerical results presented in figures 2 and 3 of
Conroy & Llewellyn Smith (2008), which were produced by varying λ3, are in fact
unphysical. The approximate analytical solution for a Boussinesq plume undergoing
a very fast reaction with a large heat of reaction in an unstratified environment also
merits discussion. Physically, this limit corresponds to a mixing controlled reaction, as
discussed by Diez & Dahm (2007). Given the assumption of a large heat of reaction,
it is questionable whether the Boussinesq approximation is appropriate in such a
limit, especially for a perfect gas plume, as discussed by Conroy & Llewellyn Smith
(2008). The authors assumed that the rate constant k � 1 and hence λ2 � 1; however,
the parameter λ2 = (2α)2/3M2/M1 is independent of k. It is also assumed that the rate
of change of the flux of species B with height above the source is ∼ 0 due to the
rapid reaction and thus the two terms in the equation governing dF2/dz could be
balanced. This balance was subsequently used to substitute for the reaction term in
the buoyancy flux equation, allowing the equation to be written purely in terms of
the momentum flux. This assumption requires that λ2F2 ∼ O(1), which is not the case
for k � 1. The equations governing the volume, momentum and buoyancy fluxes were
then solved, whilst neglecting the fact that species A in the plume would be depleted
and thereby ignoring the fact that the reaction would cease when A is exhausted.
The analytical solutions are therefore only valid for a small height above the source
and yield no information about the behaviour in the far field, or the total additional
buoyancy flux generated by the chemical reaction. Finally, for the simulations of the
Boussinesq plume in the presence of external stratification, the mass fraction of the
species in the environment (R20) at the source of the plume is defined as being 1.
The stratification of this species is governed by a relation of the form R2 = R20(z/zs)

γ .
The simulations presented in figure 5 of Conroy & Llewellyn Smith (2008) show the
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parameter γ varying between −2 and 4. The positive values of γ represent cases
where the mass fraction of species 2 in the environment increases above 1, which is
again unphysical.

This work develops a model for a reactive Boussinesq plume in which buoyancy is
generated by the reaction in the absence of external stratification. An approximate
analytical solution to the governing equations is sought in the limit of plumes which
generate a relatively small amount of additional buoyancy. Additionally, a detailed
numerical investigation of the effects of varying the key dimensionless parameters is
performed.

2. Theoretical development
2.1. Model chemistry

Here, the reaction considered is the general second-order reaction:

|νA| SA + |νB | SB → |νC | SC + |νD| SD, (2.1)

where the Si represent the species involved in the reaction, and the corresponding
stoichiometric coefficients, νi , are defined as being positive for products and negative
for reactants. Hence, reaction (2.1) can be written as∑

i

νiSi = 0. (2.2)

Species A is considered to be in the plume whilst species B is in the environment.
The enthalpy of reaction is defined as

�Hrxn =
∑

i

νi�Hf,i, (2.3)

where �Hf,i is the heat of formation of component i. By convention, �Hrxn is defined
as being negative for an exothermic reaction. The rate of the reaction per unit volume
with respect to species i is given by

ri = νikCACB, (2.4)

where k is the rate constant and Ci represents the concentration of species i. It is
assumed throughout the paper that the rate constant k is independent of temperature.
This approximation is valid for dilute mixtures because any changes in temperature
induced by the reaction are then small.

2.2. Plume equations

The governing conservation equations for the plume can now be written. Following
the method proposed by Morton et al. (1956), the time-averaged properties of the
plume are considered; the turbulent contributions are neglected. Analysis of a ring-
shaped volume of fluid in the plume yields the following equations. Conservation of
mass is given by continuity:

1

r

∂(ru)

∂r
+

∂w

∂z
= 0, (2.5)

where r and z are the radial and vertical coordinates, and u and w are the radial and
vertical velocities. Conservation of species i can be written as

u
∂Ci

∂r
+ w

∂Ci

∂z
= νikCACB. (2.6)



Turbulent plumes with internal generation of buoyancy by chemical reaction 127

Conservation of vertical momentum is

ρ∞

(
u

∂w

∂r
+ w

∂w

∂z

)
= −∂p

∂z
− ρg, (2.7)

where p is the pressure in the plume, ρ is the density and ρ∞ is the density of the
environment. The conservation of thermal energy is given by

u
∂T

∂r
+ w

∂T

∂z
=

kCACB(−�Hrxn)

ρ∞cp

. (2.8)

The formulation of these equations assumes that the Boussinesq approximation holds,
i.e. the density changes are only important in the final term of (2.7).

Within the plume, each quantity is considered to have a Gaussian distribution in
the radial direction:

θ(r, z) = θ∞ + θg(z) exp(−r2/b(z)2), (2.9)

where the subscripts ∞ and g denote the property θ at a large radial position and
the centreline of the plume, respectively. This assumption should hold when the rate
of reaction is much slower than the rate of mixing due to turbulence. It should be
noted that the widths of all the Gaussian profiles have, for simplicity, been taken to
be equal. It is also assumed that the ambient fluid is free from species A, C and D
and has zero vertical velocity; hence, CA,∞ =CC,∞ = CD,∞ = w∞ = 0. The distribution
used in (2.9) also means that the value of CB,g is negative, since the concentration of
B will decrease as the radial position r decreases from the environment to the axis of
the plume.

The plume behaviour can be described in terms of the following integrated time-
averaged fluxes:

volume flux: Q (z) =

∫ ∞

0

2πrwdr = πb2wg, (2.10)

momentumflux: M(z) =

∫ ∞

0

2πrw2dr = (1/2)πb2w2
g, (2.11)

buoyancy flux: B(z) =

∫ ∞

0

2πrwg′dr, (2.12)

flux of speciesA: FA(z) =

∫ ∞

0

2πrwCAdr = (1/2)πb2wgCA,g, (2.13)

flux of species B: FB(z) =

∫ ∞

0

2πrwCBdr = πb2wg(CB,∞ + (1/2)CB,g), (2.14)

flux of enthalpy:H (z) =

∫ ∞

0

2πrwρ∞cp(T − T∞)dr = (1/2)ρ∞cpπb2wgTg. (2.15)

Here, g′ ≡ g(ρ∞ − ρ)/ρ∞ is the reduced gravity. The fluxes of C and D have not
been included because they are related to the flux of A via the stoichiometry of
reaction (2.1). Equation (2.15) for the enthalpy flux uses T∞ as the datum temperature
for enthalpy and assumes that the specific heat of the fluid, cp , is independent of
temperature. In order to determine the integral in (2.12), the density of the plume
material must be evaluated. For dilute solutions, the density may be written as

ρ = ρsol

(
1 +

∑
KiCi − β(T − T∞)

)
, (2.16)
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where ρsol is the density of the solvent and β denotes the coefficient of thermal
expansion. This expression is simply a Taylor series expansion of density about a
pure solvent. Such expressions have often been used in the analysis of plumes (e.g.
Morton et al. 1956). The constants Ki are therefore defined as (1/ρsol) (∂ρ/∂Ci) and
can easily be determined from experiments. Substituting (2.16) into (2.12) yields

B(z) =

∫ ∞

0

2πrwg′dr =
πb2wgg

2(1 + KBCB,∞)

(
βTg −

∑
KiCi,g

)
. (2.17)

Using (2.5)–(2.8), it may be shown that the variations of the fluxes of volume,
momentum, buoyancy and species A and B with height of the plume are given by

dQ

dz
= (8π)1/2αM1/2, (2.18)

dM

dz
=

BQ

M
, (2.19)

dB

dz
=

kFAFB

M

gρsol

ρ∞

(
β

(
−

∑
νi�Hf,i

)
ρ∞cP

−
∑

νiKi

)
, (2.20)

dFA

dz
= −|νA|kFAFB

M
, (2.21)

dFB

dz
= (8π)1/2αM1/2CB,∞ − |νB |kFAFB

M
. (2.22)

Equations (2.18)–(2.22) are sufficient to describe the dynamics of the plume, because
the effects of varying the fluxes of C and D, and the effect of varying the temperature
are accounted for in (2.20). A further equation for the variation of H would be
required if the rate constant for the chemical reaction were a function of temperature.
Equation (2.20) can be rewritten as

dB

dz
=

kFAFBg′
rxn

M
, (2.23)

where g′
rxn is defined as

g′
rxn ≡ gρsol

ρ∞

(
β

(
−

∑
νi�Hf,i

)
ρ∞cP

−
∑

νiKi

)
. (2.24)

Thus, in contrast to the parameter σ derived by e.g. Clarke & McChesney (1964),
which varies locally throughout the plume, the effect of chemical reaction on the
buoyancy flux is characterized by a constant g′

rxn which can easily be defined for
a given reaction. It can also be shown that the parameter g′

rxn is consistent with
the expression for the effect of chemical reaction on density derived in Clarke &
McChesney (1964). There are clearly two contributions to g′

rxn: one that accounts
for thermal effects and another accounting for compositional changes. When g′

rxn is
positive, the reaction causes the buoyancy flux in the plume to increase.

Equations (2.20) and (2.23) could be straightforwardly modified to include the
effects of external stratification by the inclusion of the familiar (−N2 Q) term on the
right-hand side, where N2 is the buoyancy frequency, which, in this case, would be
defined as

N2 = − g

ρ∞

dρ∞

dz
= βg

dT∞

dz
− KB

ρsolg

ρ∞,0

dCB,∞

dz
− KI

ρsolg

ρ∞,0

dCI,∞

dz
, (2.25)
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where ρ∞,0 is the density of the environment at the source and the subscript I relates to
any inert chemical species which contribute to the density stratification. Considering
(2.23) reveals that a reactive plume which generates buoyancy is therefore equivalent
to an inert plume rising in a stratified environment with

N2 = −kFAFBg′
rxn

QM
. (2.26)

A knowledge of the fluxes in a reactive plume would allow the equivalent stratification
to be found for an inert plume. In a reactive plume, the flux of A will be reduced to
zero by the chemical reaction. Equation (2.26) therefore implies that for the equivalent
inert plume, the density should vary for a finite height above the source before it
reaches a constant value in the far field. It is also clear from (2.26) that when the
chemical reaction generates buoyancy (i.e. g′

rxn > 0), then the equivalent stratification
would be unstable (with density increasing with height) and vice versa.

Batchelor (1954) produced similarity solutions for plumes rising in unstably
stratified environments. The analysis assumed a power-law variation in buoyancy
frequency of the form N2 = − N2

0 zp , where N0 is constant and p > − 8/3. Whilst the
variation in equivalent buoyancy frequency described in (2.26) is more complex than
the power-law variation considered by Batchelor (1954), some qualitative comparison
can be made. The equivalent buoyancy frequency for a reactive system will reach zero
at a finite height above the source; the power-law buoyancy frequency will approach
zero asymptotically if p < 0. The similarity solutions produced by Batchelor (1954)
show that plumes rising into unstably stratified environments with −8/3 <p < 0 will
be narrower than those rising in a uniform environment. Interestingly, if −2 <p < 0,
the similarity solutions indicate that the plume velocity will actually increase with
height above the source.

Apart from drawing an analogy between the effects of buoyancy generation by
chemical reaction and external stratification on the behaviour of a plume, it is also
possible to compare the effects of chemical reaction to those of a time-dependent
source of buoyancy, as considered by Scase et al. (2006). They examined a plume
in which the buoyancy flux was reduced from an initial constant value to a final
constant value. When viewed at a particular time, the plume would have a region of
high buoyancy flux far from the source (corresponding to the initial buoyancy flux),
a region of low buoyancy flux (the final value of buoyancy flux) close to the source
and some transition region. The buoyancy flux therefore varies with height, much as
if a chemical reaction was occurring or there was an unstable density distribution in
the environment. Scase et al. (2006) found that in the regions of constant buoyancy
flux close to, and very far from, the source, the plume behaved according to the
similarity solutions of Morton et al. (1956), whereas in the transition region, the
velocity increased in proportion with distance from the source and the plume width
would first decrease with height, before tending back to the width predicted by Morton
et al. (1956).

2.3. Dimensionless plume equations

The governing equations (2.18)–(2.22) can be made dimensionless by introducing the
variables

Q̂ = Q/QS, M̂ = M/MS, B̂ = B/B0, F̂A = FA/FA,0, F̂B = FB/FB,S, ẑ = z/L.

(2.27)
The buoyancy flux at the source B0 is a natural scale for the buoyancy flux. Similarly,
the flux of species A at the source is also a natural scale. It may be recalled that in
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the case of an inert plume issuing from a point source of buoyancy, no length scale
can be derived (Morton et al. 1956). However, when the plume fluid does react with
the fluid in the environment, the following scales may be defined:

L∼ B
1/4
0

23/4π1/4α1/2(|νA| kCB,∞)3/4
, (2.28)

QS∼23/4π1/4α1/2B
3/4
0

(|νA| kCB,∞)5/4
, (2.29)

MS∼ B0

|νA| kCB,∞
, (2.30)

FB,S∼23/4π1/4α1/2B
3/4
0 CB,∞

(|νA| kCB,∞)5/4
= QSCB,∞. (2.31)

Unlike the non-reactive case, a natural length scale does emerge. Here, L gives
an indication of the height above the source over which the plume has generated
significant buoyancy through reaction with the environment, compared to that issuing
at the source. The other scales were defined primarily for mathematical convenience;
however, they do represent characteristic values of the fluxes at a distance L from the
source. The length scale in (2.28) is similar to that presented by Conroy & Llewellyn
Smith (2008), although it should be noted that the expression for HC they presented
does not, in fact, have dimensions of length. Instead HC has dimensions m mol3/2

kg−3/2. It is also interesting to compare the form of the length scale in (2.28) with
the scale for the maximum rise height of a plume in a stably stratified environment
derived by Morton et al. (1956) as

L∼α−1/2B
1/4
0 N−3/4. (2.32)

Thus, as discussed above, an analogy can clearly be drawn between the effects of
the chemical reaction and external stratification and will be discussed further below.
Using the scales in (2.28)–(2.31), the governing equations become

dQ̂

dẑ
= M̂1/2, (2.33)

dM̂

dẑ
=

B̂Q̂

M̂
, (2.34)

dB̂

dẑ
=

FA,0g
′
rxn

|νA| B0

F̂AF̂B

M̂
= ε

F̂AF̂B

M̂
, (2.35)

dF̂A

dẑ
= − F̂AF̂B

M̂
, (2.36)

dF̂B

dẑ
= M̂1/2 − γ

F̂AF̂B

M̂
, (2.37)

where

γ =
k5/4 |νA|1/4 |νB | C1/4

B,∞FA,0

23/4π1/4α1/2B
3/4
0

=
|νB |
|νA|

FA,0

FB,S

= ελ. (2.38)
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The boundary conditions for these five equations are

Q̂0 =
Q0

QS

, M̂0 =
M0

MS

, B̂0 = 1, F̂A,0 = 1, F̂B,0 = 0, (2.39a–e)

where the subscript 0 indicates values at the source. There are therefore four groups
which influence the behaviour of the reactive plume:

Q̂0, M̂0, ε = FA,0g
′
rxn

/
(|νA| B0) and γ . (2.40)

It is interesting to note that some of the boundary conditions above can be combined
to yield familiar dimensionless groups describing plume behaviour. For example,
combining (2.39a) and (2.39b) yields

5

4

Q̂2
0

M̂
5/2
0

=
5

27/2απ1/2

B0Q
2
0

M
5/2
0

= Γ0. (2.41)

This group is the inlet parameter Γ0, first defined by Morton (1959) and more recently
noted by Hunt & Kaye (2001), with Γ0 = 1 corresponding to a pure plume, Γ0 < 1 to
a forced plume, which has an excess of momentum flux, and Γ0 > 1 to a distributed
or lazy plume, which has a deficit of momentum flux.

Equations (2.35) and (2.36) can be combined and integrated to yield an expression
relating the flux of buoyancy to the flux of species A. The buoyancy flux is given by

B̂ = 1 +
FA,0g

′
rxn

|νA|B0

(1 − F̂A). (2.42)

When all of species A has been exhausted, the flux of A is zero and the buoyancy
flux tends to a constant value. Equation (2.42) indicates that the maximum buoyancy
flux generated by the reaction is given by

B̂rxn =
FA,0g

′
rxn

|νA| B0

. (2.43)

As one would intuitively expect, the additional buoyancy flux generated by the reaction
is given by the product of the flux of species A at the source, which governs the
overall rate of the reaction in the plume, and g′

rxn, which is a measure of the potential
of the reaction to generate buoyancy. Equation (2.43) also provides a criterion for the
collapse of a plume in which chemical reaction reduces the buoyancy flux. The plume
will become negatively buoyant, and hence collapse, if B̂rxn < − 1.

In addition to finding the buoyancy generated by the reaction, approximate
analytical solutions for a reactive plume, rising from a point source of buoyancy
with Q̂0 = M̂0 = 0, can be found. A perturbation analysis was performed, with the
small parameter ε defined as

ε = FA,0g
′
rxn

/
(|νA| B0). (2.44)

Thus, solutions perturbed around a reactive plume, which does not generate
buoyancy, were sought. In addition, the coefficient in the reaction term of (2.37)
was rewritten as γ = ε λ (as in (2.38)), where λ= |νB | B0/(FB,Sg

′
rxn). If λ � O(1), then

|νB | FA,0/(|νA| FB,S) ∼ O(ε), implying that species B is in great excess in the plume;
hence, species B is only weakly consumed by the reaction and the variation of the
flux of B with height is principally governed by the entrainment of ambient B into
the plume.

When attempting to solve for the O(ε) terms in the perturbation series for the
volume and momentum fluxes, as well as the fluxes of species A and B, it was found
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that the governing ordinary differential equations (ODEs) had a singular point at the
source, so the appropriate boundary conditions could not be applied. This indicates
the existence of a boundary layer just above the source, which has not been considered
here. The integration constants in the solutions for the O(ε) terms in the volume and
momentum fluxes were assigned zero to ensure that the solution behaved as expected
as ẑ → 0 and ∞. When ẑ → 0, both the volume and momentum fluxes should also
approach zero. When ẑ → ∞, the reaction ceases when species A in the plume is
depleted. The buoyancy flux reaches a constant value and the volume and momentum
fluxes should behave as those for an inert plume, i.e. Q̂ ∝ ẑ5/3 and M̂ ∝ ẑ4/3. The O(ε)
terms in the perturbation series for the fluxes of species A and B were not solved for
because of the singular point at the source and because the solutions would contain
a very large number of terms, rendering them of little practical use.

The variation of the fluxes with height are then approximately given by

Q̂ =
35/3ẑ5/3

22/354/3
+ ε

(
32/3ẑ5/3

22/354/3
+

54/3
√

π erf
[√

φ
]

21/332/37ẑ5/3
− 5 exp[−φ]

7ẑ

− 31/351/3 exp[−φ]ẑ1/3

21/37
+

32/351/6ẑ2/3Γ
[

3
4
, φ

]
22/37

)
+ O(ε2), (2.45)

M̂ = φ + ε

(
5 exp[−φ]

7
+

21/355/3 exp[−φ]

31/37ẑ4/3
+

2φ

3
−

25
√

π erf
[√

φ
]

21ẑ2

+
22/331/3ẑ1/3Γ

[
3
4
, φ

]
51/67

)
+ O(ε2), (2.46)

B̂ = 1 + ε(1 − exp[−φ]) + O(ε2), (2.47)

F̂A = exp[−φ] + O(ε), (2.48)

F̂B =
35/3ẑ5/3

22/354/3
+ O(ε), (2.49)

where φ =34/3ẑ4/3/(24/352/3) and Γ [a, b] is the incomplete Gamma function.
Unlike the approximate solutions in Conroy & Llewellyn Smith (2008), the solutions

in (2.45)–(2.49) describe a plume undergoing a chemical reaction which generates
buoyancy in the regions above the source where reaction is occurring, and also
captures the behaviour in the far field where species A has been depleted and
the buoyancy flux reaches a new constant value. Equation (2.47) for the variation
of buoyancy flux with height is consistent with that derived above in (2.42) and
indicates that the buoyancy flux increases from 1 at the source to the fixed value
1 + B̂rxn, according to (1 − exp(−ẑ4/3)). This differs from the simple form assumed by
Ishimine (2007), where the variation of buoyancy flux with height was proportional
to (1 − exp(−ẑ)). It is also interesting to note that the increase in the volume and
momentum fluxes in the far field of the plume with buoyancy generation compared to
one without buoyancy generation can be estimated from (2.45) and (2.46). Equation
(2.45) indicates that the volume flux in the far field of a reactive plume differs from
the inert plume by a factor of (1 + ε/3), whilst (2.46) shows that the momentum flux
differs from an inert plume by a factor of (1 + 2ε/3).

Equations (2.45)–(2.49) indicate that the behaviour of a reactive pure plume which
generates buoyancy is principally governed by ε =FA,0g

′
rxn/(|νA| B0). Conversely, the
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parameter λ only appears in the higher order terms in (2.45)–(2.49) and hence the
plume behaviour will be only weakly dependent on this value. These observations and
the results in (2.45)–(2.49) are verified below by comparison with numerical solutions
of the full equations (2.33)–(2.37).

3. Numerical simulations
The governing equations (2.33)–(2.37) were solved numerically using Mathematica.

In addition to plotting the integral values from the numerical solutions, the local
value of Γ , plume width and centreline velocity are also presented. The local value
of Γ is defined here as

Γ =
5

27/2απ1/2

BQ2

M5/2
=

5

4

B̂Q̂2

M̂5/2
. (3.1)

The value of this parameter will, of course, indicate regions in which the plume
behaves as a pure plume (Γ =1), a forced plume (Γ < 1) or a lazy plume (Γ > 1).
Additionally, the variation of Γ with height may be important as there is some
evidence to suggest that it may affect the magnitude of the entrainment coefficient
α. Plumes typically have greater entrainment than jets, and empirical correlations
relating the local entrainment coefficient to Γ (or some similar parameter such as Ri)
are well established (e.g. Fischer et al. 1979). Recently, Kaminski et al. (2005) revisited
the theoretical work of Priestley & Ball (1955) and developed a new expression relating
α and Γ . The variation of entrainment coefficient with height is not the focus of this
work, and hence, for simplicity, the entrainment coefficient, α, has been assumed to be
constant and equal to 0.1. The variation of Γ simply serves to characterize whether
the plume is lazy, forced or neither at different heights in the plume as reaction
proceeds.

The plume width can be calculated from the volume and momentum fluxes:

b = Q/(2πM)1/2, (3.2)

or in dimensionless form

b̂ = b/(2αL) = Q̂/M̂1/2. (3.3)

Similarly, the vertical velocity at the centreline is

wg = 2M/Q, (3.4)

or in dimensionless form

ŵg = wg/(2kCB,∞L) = M̂/Q̂. (3.5)

Thus, for a plume with no internal generation of buoyancy,

b̂ =
3

5
ẑ, (3.6)

ŵg =
52/3

22/331/3
ẑ−1/3. (3.7)

Figure 1 compares the results of numerical simulations with the approximate
analytical solutions in (2.45)–(2.49), for a pure plume issuing from a point source.
Here, ε = FA,0g

′
rxn/(|νA| B0) = 0.25 and 1, λ= |νB | B0/

(
FB,Sg

′
rxn

)
=1 and Q̂0 = 10−6

with Γ0 = 1. The numerical scheme used to solve (2.33)–(2.37) requires that Q̂0 is
non-zero. The small value chosen ensures that the numerical results are a good
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Figure 1. Comparison of the numerical (thick lines) and approximate analytical (thin lines)
solutions to the governing equations. Shown are the variation with height of: (a) the

dimensionless volume flux Q̂, (b) momentum flux M̂ , (c) buoyancy flux B̂ , (d) flux of species

A, F̂A, (e) flux of species B, F̂B , (f) the local value of Γ , (g) the plume width b̂ and

(h) the centreline velocity ŵg for ε = 0.25 (solid lines) and 1 (dashed lines), λ= 1, Q̂0 = 10−6

and Γ0 = 1.
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approximation to a plume issuing from a point source of buoyancy. For both values
of ε, the thick lines represent the numerical results and the thin lines represent (2.45)–
(2.49).

The numerical solutions for the volume flux and momentum flux in figures 1(a) and
(b) show that (2.45) and (2.46) slightly overestimate the volume and momentum fluxes;
nevertheless, the analytical solutions do provide a good representation of the fluxes,
particularly moving into the far field for ẑ > 10. As expected, the discrepancy between
the numerical and analytical solutions increases with ε. As mentioned above, the
approximate analytical solutions for the volume and momentum fluxes are singular
at the source. In fact, for ẑ < 10−5, the analytical solutions show that Q̂ → ∞ and
M̂ → −∞. Whilst this behaviour is unphysical, for the regions of interest farther from
the source, the agreement between the numerical and analytical solutions indicates
that the solutions are applicable to all ẑ of practical interest. Figure 1(c) shows that
(2.47) for the buoyancy flux agrees very well with the numerical solution, both in
terms of the final steady-state buoyancy flux and the length scale over which this
buoyancy is generated in the plume.

When ε = 0.25, there is good agreement between the numerical and analytical
solutions for the fluxes of species A (figure 1d), which decays from the source value
to 0, and species B (figure 1e), which increases with height above the source due
to entrainment. When ε is increased, the agreement between the analytical and
numerical solutions, particularly for the flux of A, is less good than at lower ε. In
fact, the analytical solutions for each ε are identical because the O(ε) terms for the
fluxes of A and B have not been found. The poorer agreement between the numerical
and analytical results is therefore expected.

There is a discrepancy between the analytical and numerical solutions for Γ for
small ẑ. This is due to the existence of the unaccounted for boundary layer in the
solutions for volume and momentum flux, as discussed above. For ẑ > 0.5, figure 1(f)
shows reasonable agreement between the numerical and analytical results. It is evident
that Γ increases above unity due to the buoyancy generated by the reaction, i.e. the
plume becomes lazy. When species A is exhausted and the buoyancy flux has reached
its new constant value, Γ decays back to one. Unlike the approximate solutions in
Conroy & Llewellyn Smith (2008), this behaviour is captured by the approximate
analytical solutions in (2.45)–(2.49).

Figure 1(g) shows that the analytical solutions slightly overestimate the width of
the plume. It is also worth noting that whilst the numerical results show a slight
narrowing of the plume with increasing ε, the analytical approximations indicate the
opposite effect. Figure 1(h) shows that whilst there is some difference between the
centreline velocity predicted by (2.45)–(2.49) in the region close to the source, in the far
field there is excellent agreement between the analytical and numerical solutions for
the plume velocity.

Equations (2.45)–(2.49) can also be used when ε < 0. The analytical solutions agree
very well with the numerical simulations, particularly in the far field. There is, as
discussed above, some discrepancy near the source. As ε → −1, the agreement between
the numerical and analytical solutions becomes much less good due to the increasing
value of |ε|.

3.1. Effects of ε = FA,0g
′
rxn/(|νA| B0)

Equations (2.43) and (2.47) indicate that increasing ε = FA,0g
′
rxn/(|νA| B0) increases the

buoyancy generated by the reaction. The effects of increasing ε are shown in figure 2
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for cases with

γ =
k5/4 |νA|1/4 |νB | C1/4

B,∞FA,0

23/4π1/4α1/2B
3/4
0

= 1, Q̂0 = 10−6 and Γ0 = 1.

In each case presented in figure 2, the total buoyancy generated by the reaction
is consistent with (2.43). Figures 2(a) and (b) show log–log plots of the volume
and momentum fluxes. When ε = 0.1, there is clearly very little deviation from the
expected power-law variations for an inert plume, i.e. Q̂ ∝ ẑ5/3 and M̂ ∝ ẑ4/3. This is
unsurprising given that the reaction generates a small amount of buoyancy relative
to that released at the source. It is evident that the volume and momentum fluxes for
the cases with ε =1 and 10 are significantly larger than those seen for ε =0.1. Figures
2(a) and (b) also show the volume and momentum fluxes in the plume returning to
the familiar power-law forms in the far field once the reaction has depleted the plume
of species A, as predicted in (2.45) and (2.46). In fact, figures 2(a) and (b) show the
plume returning to the power-law behaviour with Q̂ ∝ ẑ5/3 and M̂ ∝ ẑ4/3 for ẑ > ∼ 20.

The fluxes of A and B in figures 2(d) and 2(e) reveal some interesting trends. As
expected, the flux of A tends to zero over a finite height above the source. When the
flux of A becomes zero, the buoyancy flux reaches a constant value. It can be seen
from figure 2(d) that the length scale over which the flux of A tends to zero depends
only very weakly on ε, with larger values of ε resulting in plumes in which the flux of A
tends to zero over a slightly larger height above the source. Figure 2(e) shows that the
flux of B increases as ε increases. This is because the increased buoyancy in the plume
leads to an increased velocity. This increased vertical velocity leads to more ambient
fluid, and hence more species B, being entrained into the plume according to (1.1).

Unsurprisingly, for each case considered in figure 2(f), the maximum Γ is attained
in the plume which generates the maximum buoyancy. It is also evident that the
height at which the maximum Γ is reached has only a slight dependence on ε. The
magnitudes of the increases in Γ are also noteworthy. If Γ > 5/4, the plume velocity
will actually increase with height and if Γ > 5/2, the plume width will decrease with
height (Caulfield 1991). Even with ε =10, i.e. a plume in which the reaction generates
10 times the buoyancy flux released at the source, the maximum value of Γ increases
by less than 25 % and so the effect of the reaction is insufficient to cause the plume
velocity to increase with height, or to cause the plume to contract with height.

Figures 2(g) and (h) show the difference between the plume width and centreline
velocity in a plume which generates buoyancy compared with one which does not
(see (3.6) and (3.7)) versus height, for different values of ε. Figure 2(g) shows that
when the reaction generates buoyancy, the plume is narrower than an inert plume.
As the reaction ceases and the buoyancy flux reaches a constant value, the difference
in the widths of a reactive and an inert plume tends to a constant value; hence, the
gradient of b̂ versus ẑ tends to the expected far-field value of 3/5. This narrowing
of the plume with additional buoyancy generated by the reaction agrees well with
previous experimental and theoretical investigations (e.g. Hunt & Kaye 2005), as
well as with the similarity solutions derived by Batchelor (1954) for an inert plume
rising in an unstably stratified environment, discussed above. The behaviour is slightly
different from that discussed by Scase et al. (2006) for a plume with a time-dependent
buoyancy flux, where the plume width far from the source is necessarily given by the
similarity solution of Morton et al. (1956). However, figure 2(g) does show that the
plume with chemical reaction is only very slightly narrower than an inert plume. As
expected, the dimensionless vertical velocity at the centreline (figure 2h) is larger with
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an increase in ε. As is the case for the maximum value of Γ , the maximum difference
between the velocities of a reactive and an inert plume is only very weakly dependent
on the value of ε. It should also be noted that, as discussed above, the plume fluid
decelerates as it moves away from the source in each case because Γ never exceeds
5/4.

In summary, figure 2 shows that the parameter ε affects the buoyancy generated
by the reaction but has very little effect on the height above the source over which
reaction occurs. The increase in buoyancy generation for larger values of ε results in
larger peak values of Γ , but even when the reaction generates significant additional
buoyancy, the reaction is insufficient to cause the plume to become narrower with
distance from the source or to cause the plume velocity to increase with height.

3.2. Effects of γ =
k5/4 |νA|1/4 |νB | C1/4

B,∞FA,0

23/4π1/4α1/2B
3/4
0

Figure 3 shows numerical results for increasing values of γ when ε = 1 and Q̂0 = 10−6

with Γ0 = 1. The group γ only appears in the reaction term in (2.37) for the flux of B.
As discussed above, when γ is small, the coefficient of the reaction term is small and
entrainment dominates the variation of the flux of B with distance from the source.
Figures 3(a) and (b) show that for the cases with γ = 0.1 and 1, there is very little
difference between the volume and momentum fluxes of the two plumes. Figures 3(c)
and (d) show that there is only a very slight increase in the height over which reaction
occurs when γ is increased from 0.1 to 1. This increase in the height over which
reaction is important is also evident in figure 3(f) for Γ .

When γ is increased to 10, however, the reaction term becomes important and
species B is very strongly depleted by the reaction. This is most evident in figure 3(e),
where the flux of B is considerably less when γ = 10 than in the other cases considered.
In fact, there is a region near the source (ẑ < ∼ 3) over which the flux of B is very
small. In this region virtually all of species B which is entrained into the plume is
consumed by reaction. This means that there is a region above the source where the
reaction is controlled by entrainment as opposed to the chemical kinetics. The reduced
flux of B when γ =10 results in a lower rate of reaction; thus, the flux of A drops to
zero over a larger distance than is the case for lower values of γ , and similarly, the
buoyancy flux reaches its constant value farther from the source. The reduced rate
of reaction also results in the volume and momentum fluxes being marginally lower
than was the case for the smaller values of γ .

The maximum value of Γ is reached at a larger ẑ for larger values of γ as evident
in figure 3(f). It is also interesting to note that the maximum value of Γ does increase
slightly when γ is increased. Figure 3(g) indicates that the reactive plume is narrower
than the inert equivalent for all values of γ considered. The longer length above
the source over which reaction occurs results in the plume being narrower for larger
values of γ . Figure 3(h) shows that the differences between the centreline velocity of
a reactive and an inert plume for the three values of γ are very similar. The differing
rates of buoyancy release result in lower velocities near the source for larger values
of γ . In the far field, the velocity in all three cases is virtually identical. The reduced
volume and momentum fluxes for larger γ are therefore due to the fact that the
plume is narrower when γ is increased.

Comparison of the results of §§ 3.1 and 3.2 indicate that whilst the additional
buoyancy generated by the reaction is governed by ε, the height over which the
reaction occurs is principally controlled by γ , provided γ is sufficiently large.
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3.3. Effects of ε and γ on the maximum Γ attained in the plume

It was noted above that the values of the parameters ε and γ affected the maximum
value of Γ attained in the plume as well as the height above the source at which this
maximum was reached. Plotted in figure 4 are (a) the distance from the source at
which Γmax occurs and (b) Γmax against ε for three different values of γ . The maximum
value of ε in figure 4 is 10, which, from (2.43), corresponds to a plume where the
additional buoyancy flux generated by chemical reaction is 10 times the buoyancy
flux at the source. It is of course questionable if the Boussinesq approximation holds
for such large values of ε. The values of γ chosen are 0, which corresponds to the
notional limit where species B is not depleted by reaction, 1 and 10, where species B
is strongly depleted by reaction. Figure 4(a) shows that for each value of γ , ẑ at Γmax

decreases very slightly with increased ε. The height at which this maximum occurs is
also weakly dependent on γ for reactions in which species B is only weakly depleted
(0 <γ < 1), but does increase significantly with γ for γ > 1 when the depletion of
species B by the reaction becomes significant. As expected, figure 4(b) shows that
Γmax increases with ε for each γ because of the increased buoyancy generated by
the reaction. As noted in § 3.2, Γmax is larger for larger values of γ . For a fixed ε,
the buoyancy flux generated by the reaction is the same; however, figures 3(a) and
(b) show that a larger value of γ results in smaller volume and momentum fluxes
than is the case for small γ . Equation (3.1) indicates that it must be the reduction in
momentum flux which causes the higher values of Γmax .

3.4. Virtual source calculation for the far-field plume

It was noted above that when all of species A is consumed by the reaction, the volume
and momentum fluxes tend toward the power-law variations expected for a pure inert
plume. Given that the plume has a constant buoyancy flux in the far field, B̂∞ = 1+ ε,
an equivalent pure inert plume issuing from a virtual source located away from the
real source can be found which matches the behaviour of the reactive plume far away
from the source. The fluxes of volume, momentum and buoyancy can therefore be
considered to be of the form

Q̂ =
35/3

22/354/3
B̂1/3

∞ (ẑ − ẑv)
5/3

, (3.8)

M̂ =
34/3

24/352/3
B̂2/3

∞ (ẑ − ẑv)
4/3

, (3.9)

B̂ = B̂∞ = 1 + ε, (3.10)

where ẑv is the location of the virtual source.
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Figure 5. Variation of the location of the virtual source ẑv for a pure inert plume whose
behaviour is the same as a reactive plume in the far field, as a function of ε. The location of
the virtual source was found by fitting (3.8) and (3.9) to numerical solutions of plumes with

Q̂0 = 10−6, Γ0 = 1 and γ = 0, 1, 5, 10.

It should be recalled from § 2.3 that the approximate analytical solutions indicated
that for large ẑ, the volume flux was larger than that for an inert plume by a factor
of (1 + ε/3), whereas the momentum flux was larger by a factor of (1 + 2 ε/3). It is
clear that these factors are the first two terms in the series expansion of B̂1/3

∞ and B̂2/3
∞

from (3.8) and (3.9). Comparison of (3.8) and (3.9) with the forms of the approximate
analytical solutions in (2.45) and (2.46) also indicate that ẑ/ẑv � 1, i.e. the virtual
source is located very close to the real source compared with the distance over which
power-law behaviour in the far field is re-established.

In order to confirm the forms of (3.8) and (3.9), the location of the virtual source
was found numerically when ε and γ were varied. The variation of the location of
the virtual source with ε for γ = 0, 1, 5 and 10 is shown in figure 5. In each case, it
is clear that ẑv > 0, i.e. the virtual source is always located ahead of the real source.
The fact that the virtual source is downstream of the real source is as expected, given
the increases in volume and momentum fluxes associated with the chemical reaction,
and the associated reduction in the plume width. Figure 2(g) shows that plumes with
large ε are narrower than those with small ε; hence, one would expect the virtual
source to move farther from the real source with increasing ε and this is also evident
in figure 5. A similar trend emerges for the effect of varying γ . Figure 3(g) shows
that larger values of γ result in narrower plumes, and hence virtual sources which
are farther from the real source, as shown clearly in figure 5.

It is also interesting to note that for the cases presented in figure 5, ẑv ∼ O(1).
This means that zv is of order L, i.e. the virtual source is located ahead of the real
source by a similar distance to the characteristic length scale over which reaction is
important. Figures 2(f ) and 3(f) show that the maximum value of Γ is also reached
over a similar length scale. Figures 2(f) and 3(f) also show that for plumes with
reactions which generate significant additional buoyancy, Γ → 1 for ẑ > ∼ 10, thus
confirming the above hypothesis that the virtual source is located close to the real
source, relative to the distance over which power-law behaviour is re-established in
the far field.



142 A. N. Campbell and S. S. S. Cardoso

3.5. Effects of the volume flux at the source Q̂0

Thus far, only a plume issuing from a point source of buoyancy has been considered.
Many real plumes have non-zero fluxes of volume and momentum at the source,
i.e. Q̂0 and M̂0 are non-zero. The behaviour of such plumes is considered below.
It should be noted that the length scale derived in (2.28) has been used here for
consistency. Of course, for plumes with non-zero volume and momentum fluxes at
the source, the familiar length scales LQ(∼Q

3/5
0 /B

1/5
0 ) and LM (∼M

3/4
0 /B

1/2
0 ), which

indicate the height above the source over which the volume and momentum fluxes at
the source are important, can be derived. The effect of increasing the volume flux Q̂0

and momentum flux M̂0 simultaneously (with Γ0 = 1) on the behaviour of the plume
is shown in figure 6. Here Q̂0 is varied from 0.1 to 10 with ε = γ =1.

The numerical results in figures 6(a) and (b) show that increasing Q̂0 has little effect
on the development of the volume and momentum fluxes with height just above the
source, beyond the increase in their magnitudes. However, for larger values of Q̂0,
the plume approaches the familiar power-law variations of volume and momentum
flux farther from the source. Figures 6(c) and (d) indicate that the length scale over
which reaction occurs is largely unaffected by the increase in Q̂0; the decrease in the
flux of A with height and the consequent increase in buoyancy flux are very similar
in all three cases presented.

Despite the fact that each case considered in figure 6 generates the same additional
buoyancy flux over approximately the same height above the source, larger values of
Q̂0 (and hence, Q̂) result in a larger maximum value of Γ in figure 6(f ). It should
be recalled from § 3.1 that when ε = 10 in a plume rising from a point source of
buoyancy, the maximum value of Γ was less than 5/4. In this case with ε = 1, a larger

value of Q̂0 = 10 results in Γmax ∼ 1.35.
The plots for the variation of the dimensionless plume width with height in

figure 6(g) show a similar trend to those seen previously in figure 2, i.e. in the region
above the source for plumes with strong generation of buoyancy, the plume is slightly
narrower than an inert plume would be. Despite the larger values of Γmax than were
seen in figure 2, the plume is still far removed from the conditions which would cause
the plume width to decrease with height (Γ > 5/2). In the far field, the variation of
plume width with height is linear with a gradient consistent with the result for pure
inert plumes. It should be pointed out that the different intercepts at ẑ = 0 occur due
to the source having finite size for Γ0 = 1 and Q̂0 
=0.

For a similar reason, the dimensionless velocity is lower for larger values of Q̂0 in
figure 6(h). When the volume flux at the source is small (Q̂0 = 0.1), the velocity decays
very rapidly above the source. It is interesting to note that when Q̂0 = 10, the velocity
remains approximately constant as the distance from the source increases. Closer
inspection reveals that there is in fact a region in which the velocity is increasing
with distance from the source. This increase in velocity with height corresponds to
the region in which Γ > 5/4 in figure 6(f) (Caulfield 1991). In this case, the reaction
generates sufficient additional buoyancy to accelerate the plume, which is qualitatively
similar to the behaviour predicted by Batchelor’s (1954) solutions for an inert plume
rising in an unstably stratified environment.

In summary, varying Q̂0 can be seen, from figure 6, to have little effect on the height
over which chemical reaction occurs in the plume. The main effect of increasing Q̂0

is the increase in the maximum value of Γ due to the larger value of the factor
5Q̂2/(4M̂5/2) in (3.1). It is evident from comparison of figures 2(f) and 6(f) that the
maximum value of Γ is increased more by increasing the volume flux at the source
than by increasing ε, i.e. the buoyancy generated by the reaction.
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3.6. Effects of Γ0

In many important cases, the plume will not have Γ0 = 1 at the source, as considered
above. If Γ0 < 1, the plume has an excess of momentum flux at the source and behaves
as a forced plume, whereas if Γ0 > 1, the plume has a deficit of momentum flux at
the source and is a lazy plume. The effects of varying Γ0 are considered below. In
practice, varying Γ0 could be achieved by passing the same volume flux Q̂0 through
a source of varying size.

Figure 7 shows the behaviour of several forced plumes with buoyancy generation by
chemical reaction. Here Q̂0 = ε = γ = 1. The log–log plots of volume and momentum
flux in figures 7(a) and (b) show that the cases with a lower Γ0, i.e. those with a higher
degree of forcing, have larger volume and momentum fluxes above the source. It is
also evident in figures 7(a) and (b) that the magnitude of the volume and momentum
fluxes in the far field is very similar for each case considered, and that the height at
which the plume approaches the far-field behaviour, with Q̂ ∝ ẑ5/3 and M̂ ∝ ẑ4/3, is
increased when the degree of forcing in the plume is increased.

As expected, varying Γ0 has no effect on the buoyancy flux generated by the
reaction and figures 7(c) and (d) show that there is very little difference in the height
over which buoyancy is generated in the plume between each of the cases presented.
Figure 7(f) shows the variation of Γ with height above the source. When Γ0 ∼ 1, the
buoyancy generated by the reaction causes Γ to increase above 1, i.e. the reaction
still causes the plume to become lazy over a limited height, before Γ tends to unity in
the far field. For Γ0 closer to zero, Γ approaches the pure plume limit monotonically.
Figures 7(g) and (h) show that cases with a smaller Γ0 have a smaller plume width
at the source and higher velocity. For the cases with Γ0 < 1 in figure 7(g), the rate of
spread of the plume just above the source is larger than that seen in a pure plume,
as expected.

Figure 8 compares the behaviour of several lazy plumes (i.e. Γ0 > 1). It is very
clear that the behaviours of the plumes in all the cases considered are very similar.
There are no significant differences between the variation of the volume, momentum
and buoyancy fluxes for any of the cases presented. Figure 8(f) shows that in a lazy
plume, Γ decays to unity as height increases. Figures 8(g) and (h) show some features
which characterize lazy plumes. Just above the source the plume radius actually
decreases slightly for Γ0 = 5 and 10. As discussed above, this narrowing occurs if
Γ > 5/2 (Caulfield 1991). Similarly, for the three cases with Γ0 > 5/4, the plume fluid
accelerates as it moves away from the source, reaching a maximum when Γ = 5/4,
before decaying to the far-field solution, which is virtually identical for all of the cases
considered.

Consideration of both figures 7 and 8 reveals that varying Γ0 has very little effect
on either the length scale over which reaction occurs in the plume or the behaviour
of the plume in the far field. Varying Γ0 does affect the plume behaviour just above
the source, as it does for inert plumes.

3.7. Reversing buoyancy

Up to this point, only reactions which cause an increase in buoyancy flux have been
considered (i.e. reactions in which the products are less dense than the reactants
or exothermic reactions); however, reactions which reduce the buoyancy flux in the
plume, such as endothermic reactions or reactions in which the products are more
dense than the reactants, can also occur. In such a plume the buoyancy flux will be
reduced to zero at some height above the source when B̂rxn = − 1. If B̂rxn is reduced
further, the plume will become negatively buoyant and may subsequently collapse.
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The governing equations can be solved for a plume with reversing buoyancy. Such a
plume can be achieved by having B0 and g′

rxn with different signs. Figure 9 compares

the behaviour of a plume from a point source of buoyancy with B̂rxn = − 1 (i.e. a
plume where the buoyancy flux is reduced to zero at some height above the source)
with that of a plume where B̂rxn = − 1.1. Figure 9(c) shows that for B̂rxn = − 1, the
buoyancy flux in the plume is effectively zero for ẑ > 5. At greater distances from the
source, the momentum flux is constant, as expected, so in fact the flow now behaves
as a jet, i.e. the buoyancy flux is zero. This is reflected in the variation of the volume
flux with height (figure 9a), which is linear as predicted for a jet. The fact that the
flow has become a jet is also shown by Γ in figure 9(f), which of course reaches zero
when the buoyancy flux (see (3.1)) goes to zero. The value of Γ appears to approach
zero over a longer length scale in figure 9(f) than does the buoyancy flux in figure
9(c). This is of course due to the additional factor 5Q̂2/(4M̂5/2) in (3.1). In the region
ẑ > 5 the value of the entrainment coefficient α for a jet would be more appropriate
than that for a plume; however, this has not been considered here. The plots of
plume width (figure 9g) and velocity (figure 9h) also show the expected behaviour for
a jet, for B̂rxn = − 1. In the far field the plot of b̂ against ẑ is linear with gradient 1
indicating that b ∝ 2αz, as predicted for a jet. Similarly, the centreline velocity ∝ ẑ−1,
as expected for a jet. When B̂rxn = − 1.1, the plume collapses. This collapse occurs at
ẑ ∼ 6.5, where the momentum flux in the plume becomes zero and the plume radius
tends to infinity, whilst the velocity rapidly approaches zero. This collapse is caused
by the buoyancy in the plume becoming negative for ẑ > 3.5. When the buoyancy flux
becomes negative, so does Γ (not plotted) and as the momentum flux approaches
zero, Γ → − ∞. The reversal of buoyancy results in a marginally reduced volume
flux. Of course, in this region the entrainment assumption in (1.1) becomes more
questionable.

It was mentioned above that an analogy could be made between the effects of a
chemical reaction which generates buoyancy and an inert plume rising in a stratified
environment. For cases with B̂rxn > 0, the additional buoyancy generated by the
chemical reaction is analogous to a plume rising through an unstably stratified
environment (i.e. one in which the density increases with height) with the density
tending to a constant value for large distances from the source. Similarly, if B̂rxn < −1,
the plume will collapse, as shown in figure 9. This behaviour is similar to that seen
when an inert plume rises in a stably stratified environment. In such situations it has
been established experimentally (Turner 1973) that the maximum rise height of the
plume is given by

zmax = 5.0π−1/4B
1/4
0 N−3/4. (3.11)

The rise height (defined here as the height at which the momentum flux is zero) of a
plume which collapses due to the effects of chemical reaction is plotted as a function
of ε, the additional buoyancy generated by the reaction and γ , the dimensionless rate
of depletion of species B by the reaction, in figure 10. As expected, as ε → − 1, the
maximum rise height tends to infinity. It is also evident from figure 10 that given |ε| is
large enough, the rise height for a fixed value of γ is only a very weak function of ε.
For large values of |ε| the maximum rise height can be approximated as ẑmax = f (γ )
and so for a fixed value of γ ,

zmax∼B
1/4
0

(
|νA| kCB,∞

)−3/4
, (3.12)

which is very similar in form to (3.11).
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4. Conclusions
An integral model has been developed to describe the behaviour of a plume

with internal generation of buoyancy, by means of a second-order chemical reaction
between species A in the plume and species B in the environment. The potential for a
reaction to generate buoyancy in a plume is measured by the term g′

rxn, which indicates
the change in reduced gravity induced by reaction. There are two contributions to
g′

rxn: one to account for thermal effects and another to account for compositional
changes. Scaling indicates that the behaviour of a reactive plume depends on the
volume and momentum fluxes at the source, and the groups ε = FA,0g

′
rxn/(|νA|B0) and

γ = k5/4|νA|1/4|νB |C1/4
B,∞FA,0/(2

3/4π1/4α1/2B
3/4
0 ). An expression relating the buoyancy flux

in the plume to the flux of species A was derived; this equation indicates that the
maximum buoyancy flux generated by the reaction is given by Brxn =FA,0g

′
rxn/|νA|.

Approximate analytical solutions have been found for a plume rising from a point
source of buoyancy. These solutions show that ε is important in determining the
buoyancy generated by the reaction.

The analytical solutions were verified by comparison with numerical solutions of
the full governing equations. The numerical solutions showed that even for a plume
with ε =10, i.e. one in which the buoyancy generated by the reaction is 10 times that
released at the source, the buoyancy generated by the reaction was insufficient to
cause the plume fluid to accelerate as it moved away from the source or to cause the
plume to become narrower with height. It was also shown that if γ is small, then it
has little impact on the behaviour of the plume; however, when γ > 1, the height over
which reaction occurs increases significantly with increasing γ . The behaviour of the
plume in the far field, when reaction ceases, was shown to be consistent with that of
an inert plume with buoyancy flux 1 + ε issuing from a virtual source downstream of
the real source. Increasing ε and γ caused the location of the virtual source to move
farther away from the real source.

The effects of varying the volume flux at the source and the Morton source
parameter Γ0 were investigated numerically. It was observed that variation of the
conditions at the source had very little impact on the length scale over which reaction
occurred in the plume. Interestingly, for a case with ε = 1, it was shown that if the
dimensionless volume flux at the source increases to 10, the effect of the reaction is
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sufficient to cause the velocity of the plume to increase with distance from the source.
Finally, it was observed that when B̂rxn is negative, the reaction causes a reduction in
the buoyancy flux in the plume. If B̂rxn = − 1, the buoyancy flux is reduced to zero
above the source and the plume behaves as a jet above this height. A further small
decrease in B̂rxn is seen to result in the plume collapsing.
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